Что такое агрба « « Что Такое - Сборник словарей
сделать стартовой  |  добавить в избранное

referatnazakaz.ru

Словари, энциклопедии



Pridi.Ru - Лучшие знакомства


Что Такое >  > а > агрба

Что такое агрба

агрба   Большая советская энциклопедия

агрба - Азиз Рашидович[р.2(15).6.1912], абхазский советский актёр и режиссёр, нар. арт. Груз. ССР (1954). Учился в студии под рук. В. И. Домогарова (Сухуми, 1930-33), в абх. студии при Груз, театре им. Руставели (Тбилиси, 1936-38). В 1931-63 актёр, в 1939-63 гл. реж. Абхазского театра (Сухуми). Создал героические (Сейдык- "Данакай" Лакербая, Анания-"Измена" Сумбатова-Южина) и ярко сатирические (Гацый - "Жених" Шавлохова, Городничий - "Ревизор" Гоголя) образы. Поставил спектакли: "Отелло" Шекспира (1941), "Чёрные гости" Гулиа (1955), "Кремлёвские куранты" Погодина (1959) и др. Награждён орденом Трудового Красного Знамени.

АГРЕГАТ (от лат. aggrego - присоединяю) в технике, укрупнённый унифицированный (нормализованный) узел машины (комплекса машин), обладающий полной взаимозаменяемостью, самостоятельно выполняющий отд. функции. Характерными А. являются: электродвигатели, редукторы, насосы и т. п. Иногда термин "А." служит для обозначения установки из 2 или более машин. См. также Агрегатирование.

АГРЕГАТ в минералогии и петрографии, скопление и сростки обломков одного или нескольких минералов различной формы и строения. Различают: цементированные, рыхлые, землистые, пористые и плотные А.; по форме зёрен - зернистые, кристаллические, игольчатые, шестоватные, волокнистые, спутанно-волокнистые, ра-диально-лучистые, равномерно-зернистые, скорлуповатые, натёчные и т. д.; по составу - простые, состоящие из одного минерала (напр., из кварца - кварцит или кальцита -мрамор), и сложные - из нескольких минералов (напр., гранит - А. кварца, полевого шпата и слюды). В. П. Петров.

АГРЕГАТИРОВАНИЕ, метод компоновки машин (комплексов машин) из взаимозаменяемых унифицированных агрегатов. А. широко применяется при создании машин различного назначения, т. к. позволяет наиболее рационально организовать произ-во и эксплуатацию машин. Напр., при создании семейства грузовых автомобилей различного назначения можно выделить ряд узлов, одинаковых или аналогичных для всех машин (двигатель, коробка передач, передний мост и др.). Это позволяет увеличить серийность отд. узлов и снизить стоимость их изготовления благодаря более высокой степени механизации и автоматизации произ-ва. А. значительно удешевляет и упрощает своевременное и непрерывное совершенствование различных машин путём изменения конструкции морально-устаревших узлов. Метод А. значительно улучшает эксплуатацию и ускоряет ремонт машин: при выходе из строя одного из агрегатов время простоя машины можно сократить, заменив неисправный агрегат исправным. Агрегатный метод ремонта, т. е. замена неисправных узлов новыми или отремонтированными, распространён в нар. х-ве. И. М. Вороничев.

АГРЕГАТНАЯ BЫEMKA УГЛЯ, способ произ-ва работ в длинном (100-300 м) забое угольной шахты, при к-ром все процессы - выемка, погрузка и доставка угля, передвижка конвейера, управление кровлей, укладка силовых кабелей и шлангов для орошения и зачистка почвы пласта - автоматизированы. Комплекс для А. в. у. состоит из узкозахватного добычного комбайна или струга, передвижного конвейера, гидрофициро-ванной крепи, кабеле- и шлангоукладчика и приспособления для зачистки почвы пласта. Управление агрегатом (электроги-дравлич. или гидравлич.) производится из подготовит, выработки. Для эффективной работы агрегата требуются: спокойное залегание и достаточная мощность угольного пласта (не менее 1,2 м), действенная дегазация пласта и др. горно-технич. условия, к-рые определяются проектом работы лавы.

Лит.: Материалы научной сессии по автоматизированным очистным агрегатам и комплексам, обеспечивающим выемку угля без постоянного присутствия людей в забое, М., 1966. А. П. Судоплатов.

АГРЕГАТНАЯ УНИФИЦИРОВАННАЯ СИСТЕМА, система пневматич. средств автоматики общепромышленного назначения, состоящая из отдельных функциональных блоков с унифицированными входными и выходными параметрами. Номенклатура А. у. с. построена таким образом, что из сравнительно небольшого набора блоков, используя их в определённых сочетаниях и количествах, можно составлять различные по сложности и назначению системы автома-тич. контроля и регулирования производств, процессов.
 

01-PAKET-12-1.jpg

В состав А. у.с. входят: регулирующие блоки, осуществляющие регулирование по пропорциональному и пропорционально-интегральному законам, блоки регулирования соотношения двух параметров и соотношения двух параметров с коррекцией по третьему параметру, блоки предварения (для введения воздействия по производной), блоки суммирования, умножения, возведения в квадрат и извлечения квадратного корня, а также приборы контроля, регистрирующие и показывающие. Для совместной работы с электрич. приборами А. у. с. комплектуется электропневматич. и пневмоэлект-рич. преобразователями. надёжны в эксплуатации, просты в об-:луживании. Они применяются при автоматизации производств, процессов в таких отраслях пром-сти, как химия, нефтепереработка, нефтедобыча, теплоэнерге-гика, газовая, пищевая пром-сть и др. На рис. 1 и 2 показаны нек-рые блоки.

01-PAKET-12-2.jpg

Регулирующие блоки А. у. с. могут работать с любыми датчиками с пневматич. выходом и с серийно выпускаемыми регулирующими органами с пневматич. мембранными исполнит, механизмами. В качестве входных и выходных параметров блоков А. у. с. принят стандартный для пневмоавтоматики диапазон давления сжатого воздуха - 0,02-0,1 Мн/м2(0,2-1 кгс/см2). Блоки и приборы А. у. с. унифицированы также и конструктивно: они содержат унифицированные узлы, детали и присоединительную арматуру. Блоки и приборы А. у. с. пожаро- и взрывобезопасны,
01-PAKET-12-3.jpg

Большинство блоков (кроме приборов контроля) имеют цилиндрич. форму и состоят из набора металлич. шайб, разделённых гибкими мембранами из прорезиненного полотна. На боковой поверхности блоков располагаются органы настройки, а также крепёжные и присоединит, устройства. Приборы контроля представляют собой сильфонные манометры (см. Силъфон) с пределами измерений 0,02 - 0,1 Мн/м2 (0,2 - 1 кгс/см2); выпускаются нескольких модификаций: для записи и показания одного параметра (рис. 1) и более сложные - для записи и указания величины регулируемого параметра, указания заданного значения регулируемого параметра и положения исполнит, механизма.

На рис. 2 показан общий вид регулирующего блока А. у. с., содержащего наибольшее количество унифицированных узлов и деталей. Большинство блоков строится по этому типу. Его принципиальную схему см. на рис. 3. Работа блока основана на компенсации усилий, возникающих на мембранах от давления сжатого воздуха, подводимого к камерам блока - пространствам, образованным стенками шайб и мембранами. Регулирующий блок - изодром-ный (пропорционально-интегральный) регулятор с настройкой диапазона дросселирования от 10 до 250% и времени изо-црома от 3 сек до 100 мин. Блок состоит из узлов: усилителя мощности (камеры А, Б, В та. Г), элемента сравнения (камеры Е и Ж), обратной связи (камеры Д и К), элемента изодрома (камеры Л и М) и отключающего реле (камеры Н, О и П). К блоку подводится сжатый воздух из линии питания, от измерит, блока (датчика) и от задающего устройства. При отклонении регулируемого параметра от заданного значения возникает разность давлений воздуха на входах блока, в результате чего нарушается баланс сил, действующих на мембраны 1,2,3, скреплённые общим штоком 4. В зависимости от направления результирующего усилия мембранный узел перемещается вверх или вниз. При этом заслонка 5, находящаяся на нижнем конце штока 4, открывает или закрывает сопло б, вследствие чего давление сжатого воздуха, поступающего из линии питания блока через постоянное сопротивление, изменяется. Изменение этого давления усиливается усилителем и поступает в канал 7 и выходную линию блока, связанную с линией исполнит, механизма. Отрицат. обратная связь реализуется подачей сжатого воздуха в камеру Д. Значение коэфф. усиления регулятора (диапазона дросселирования) устанавливается настройкой дросселя 8, регулирующего поступление сжатого воздуха из канала 7 в камеру положит, обратной связи К. Элемент изодрома состоит из глухой камеры М с дросселем 11 и проточной камеры Л, в к-рой давление сжатого воздуха всегда следит за давлением в камере М. Время изодрома устанавливается дросселем 11, от степени открытия к-рого зависит время заполнения камеры М. Дроссели 8 и 11 представляют собой игольчатые клапаны. Для перехода с автоматич. управления на ручное служит отключающее реле, в к-ром при подаче воздуха питания в камеру П мембрана 9 перекрывает сопло 10, отсоединял выходную линию регулятора от линии исполнит, механизма.

Лит.: Березовец Г. Т., Малы и А. Л., НаджафовЭ. М., Приборы пневматической агрегатной унифицированной системы и их использование для автоматизации производственных процессов, 3 изд., М., 1965; Прусенко В. С., Пневматические регуляторы, М.- Л., 1966. Г. Т. Березовец.

АГРЕГАТНЫЕ СОСТОЯНИЯ вещества, состояния одного и того же вещества (напр., воды, железа, серы), переходы между к-рыми сопровождаются скачкообразными изменениями свободной энергии, энтропии, плотности и др. осн. физ. свойств. Так, вода при нормальном давлении 101 325н/м2 = 760мм рт. ст. и при 00С кристаллизуется в лёд, а при 10Q0C кипит и превращается в пар. Следовательно, вода может существовать в твёрдом, жидком и газообразном А. с. К трём указанным А. с. вещества часто причисляют ещё плазму. Существование нескольких А. с. обусловлено различиями в характере теплового движения молекул (атомов) вещества и в их взаимодействии. В газах молекулы почти не взаимодействуют и движутся свободно, заполняя весь объём, в к-ром газ находится. У жидкостей и твёрдых тел - конденсированных систем - молекулы (атомы) расположены близко друг от друга и взаимодействуют со значит, силами. Это приводит к сохранению жидкостями и твёрдыми телами определённого объёма. Однако характер движения молекул в жидкостях и в твёрдых телах различен, чем и объясняется различие их структуры и свойств. У твёрдых тел в кристаллич. состоянии атомы совершают лишь небольшие колебания вблизи узлов кристаллич. решётки; структура этих тел характеризуется высокой степенью упорядоченности - дальним порядком в расположении атомов (см. Дальний порядок и ближний порядок). Тепловое движение молекул жидкости представляет собой сочетание малых колебаний около положений равновесия в частых перескоков из одного положения равновесия в другое. Последние и обусловливают существование в жидкостях лишь ближнего порядка в расположении молекул (атомов), а также свойственные жидкому состоянию подвижность и текучесть.

Плазму выделяют в особое А. с. вещества в связи с тем, что заряженные частицы плазмы, в отличие от нейтральных молекул обычного газа, взаимодействуют друг с другом на больших расстояниях. Этим объясняется ряд своеобразных свойств пл-азмы.

Переходы из более упорядоченного по структуре А. с. вещества в менее упорядоченное могут происходить как скачком при определённых темп-ре и давлении (см. Плавление, Кипение), так и непрерывно (см. Фазовый переход). Возможность непрерывных переходов (напр., жидкости в пар - см. Критические явления) указывает на нек-рую условность выделения А. с. веществ. Эта условность подтверждается существованием твёрдых аморфных веществ, сохранивших структуру жидкости (см. Аморфное состояние); нескольких видов кристаллич. состояния у ряда веществ (см. Полиморфизм); жидких кристаллов; существованием у полимеров особого высокоэластического состояния, промежуточного между стеклообразным и жидким, и др. явлениями. В связи с этим в совр. физике вместо понятия А. с. вещества пользуются более широким понятием фазы (см. Фаза в термодинамике).



Вернуться



© ChtoTakoe.ru      Разработка сайта VSD.ru