Что такое автофазировка « « Что Такое - Сборник словарей
сделать стартовой  |  добавить в избранное

referatnazakaz.ru

Словари, энциклопедии



Pridi.Ru - Лучшие знакомства


Что Такое >  > а > автофазировка

Что такое автофазировка

автофазировка   Большая советская энциклопедия

автофазировка - явление, обеспечивающее ускорение электронов, протонов, альфа-частиц, многозарядных ионов до высоких энергий (от неск. Мэв до сотен Гэв) в большинстве ускорителей заряженных частиц; открыто сов. физиком В. И. Векслером в 1944 и независимо от него амер. физиком Э. Макмилланом в 1945. Принципиальную роль это явление сыграло в повышении предела достижимых энергий в циклич. ускорителях.

В циклич. ускорителях частицы совершают движение по орбитам в спец. вакуумной камере, помещённой в магнитное поле, и многократно проходят через ускоряющие электроды. Ускорение частиц происходит под действием высокочастотного электрич. поля, приложенного к ускоряющим электродам. Для непрерывного ускорения частиц необходимо, чтобы в моменты ускорения направления движения частицы и электрич. поля совпадали; для этого нужно обеспечить синхронизм (резонанс) между движением частиц и изменением электрич. поля. Если амплитуда разности потенциалов между электродами равна 01-PAKET_11-2.jpg то приобретаемая частицей с зарядом е энергия01-PAKET_11-3.jpg при каждом прохождении через ускоряющий промежуток равна01-PAKET_11-4.jpg где 01-PAKET_11-5.jpg- фаза электрич. поля в момент прохождения частицы,отсчитываемая от его максимального значения. Фазу поля ф, при к-рой частица пролетает через ускоряющий промежуток, называют для краткости фазой частицы.

Чтобы частица двигалась синхронно с изменением ускоряющего поля,её частота обращения 01-PAKET_11-6.jpgдолжна быть равна или кратна частоте 01-PAKET_11-7.jpg электрич. поля: 01-PAKET_11-8.jpg где q - целое число (кратность резонанса). Тогда частица будет проходить ускоряющие электроды при одном и том же значении фазы ф и при каждом прохождении получать от поля одну и ту же энергию. Поэтому она будет всё время ускоряться.

01-PAKET_11-9.jpg

Такая ситуация выполняется в циклотроне - единственном резонансном ускорителе, к-рый существовал до открытия принципа А. В циклотроне частицы движутся в постоянном магнитном поле Н с постоянной частотой обращения 01-PAKET_11-10.jpg (где т - масса частицы, 01-PAKET_11-11.jpg - скорость света). Поэтому при частоте ускоряющего электрич. поля 01-PAKET_11-12.jpg для всех частиц наблюдается точный резонанс с полем.

Однако при достижении достаточно большой энергии массу т уже нельзя считать постоянной: начинает сказываться эффект увеличения массы частицы с ростом энергии (см. Относительности теория). Возрастание массы приводит к уменьшению частоты обращения 01-PAKET_11-13.jpg и к нарушению резонанса между движением частицы и ускоряющим полем. Частицы перестают получать энергию от электрич. поля и выпадают из режима ускорения. Поэтому в обычном циклотроне существует предельная энергия, выше к-рой ускорение невозможно. Для протонов этот предел энергии составляет примерно 20 Мэв.

Для сохранения резонанса можно, напр., медленно снижать частоту w0 ускоряющего поля в соответствии с уменьшением со или медленно изменять напряжённость магнитного поля Н, чтобы компенсировать уменьшение частоты со (или вместе и то и другое).

Но в ускорителе одновременно ускоряются сотни и тысячи миллиардов частиц, имеющих разброс по энергиям, а значит, и по массам. Следовательно, частицы будут иметь различные частоты обращения w. Поэтому невозможно осуществить точны и резонанс с ускоряющим полем для движения всего множества ускоряемых части ц. До открытия принципа А. эта трудность казалась непреодолимой.

Векслер и Макмиллан показали, что именно благодаря зависимости частоты обращения частиц от их энергии (массы), приводящей к нарушению точного синхронизма движения частиц с ускоряющим полем, само поле будет автоматически осуществлять для большого количества частиц подстройку синхронизма в среднем. Иными словами, в случае, когда w зависит от энергии, ускоряющее поле частоты 01-PAKET_11-14.jpg(к-рая может и медленно меняться) заставляет частицы двигаться по орбитам с частотами, в среднем равными (или кратными) частоте w0, т. е. реализует резонанс в среднем; при этом фазы частиц колеблются и концентрируются около одной фазы ф0 (см. ниже), к-рая наз. синхронной, или равновесной. Это явление и наз. А.

Т. о., А. приводит к тому, что частицы в среднем обращаются синхронно с изменением ускоряющего поля:01-PAKET_11-15.jpg

Рассмотрим, как осуществляется А. в циклич. ускорителе с однородным и постоянным во времени магнитным полем и при q = 1. Частота обращения частиц в таком ускорителе обратно пропорциональна их массе, а следовательно, их полной энергии (равной сумме энергии покоя и кинетич. энергии). Синхронная частица (воображаемая частица, к-рая движется в точном резонансе с ускоряющим полем.) будет ускоряться при одной и той же фазе01-PAKET_11-16.jpg и каждый раз получать энергию 01-PAKET_11-17.jpg Для того чтобы движение частиц по орбитам было устойчивым, т. е. чтобы частицы с фазами01-PAKET_11-18.jpg не выпадали из режима ускорения, синхронная фаза фо должна быть положительной - находиться на спаде ускоряющего напряжения (рис. 1). Действительно, частица с меньшей энергией, для к-рой частота обращения 01-PAKET_11-19.jpg и к-рая в некоторый момент движется вместе с синхронной, в дальнейшем будет опережать синхронную, попадать в ускоряющий промежуток раньше и ускоряться при меньшей фазе 01-PAKET_11-20.jpg Следовательно, она получит большую энергию:01-PAKET_11-21.jpg и её частота начнёт уменьшаться, так что в какой-то момент наступит точный резонанс, 01-PAKET_11-22.jpg Но этот резонанс является только мгновенным - ведь частица по-прежнему будет получать от поля большую энергию и её частота со будет нек-рое время продолжать уменьшаться и станет меньше синхронной, 01-PAKET_11-23.jpg Тогда частица начнёт отставать от синхронной, будет получать меньшую энергию от ускоряющего поля, чем синхронная частица, и её частота станет вновь расти.

Аналогичный процесс происходит и с частицей, отставшей от синхронной и попадающей в ускоряющий промежуток несколько позже, при фазе01-PAKET_11-24.jpg Такая частица будет получать от поля меньшую энергию, её частота начнёт расти, и частица будет догонять синхронную.

Т. о., частоты обращения частиц совершают медленные по сравнению с частотой обращения колебания около значения w0. Соответственно колеблются фазы частиц около значения 01-PAKET_11-25.jpg а средняя их фаза является устойчивой: 01-PAKET_11-26.jpg (отсюда назв.- фазовая устойчивость, или А.). Поэтому в среднем будет автоматически поддерживаться синхронизм между движением частиц и ускоряющим полем. Одновременно совершают колебания и другие характеристики движения частиц (энергия, радиус орбиты) около их равновесных значений, отвечающих синхронной частице. Эти колебания фазы и связанные с ними колебания радиуса орбиты частиц наз. радиально-фаэовыми.

01-PAKET_11-27.jpg

А. действует и в линейных резонансных ускорителях протонов, в к-рых (в отличие от циклич. ускорителей) частота прохождения частицей последовательных ускоряющих промежутков (расположенных по прямой линии) прямо пропорциональна скорости её движения, т. е. увеличивается с ростом энергии. Однако устойчивая синхронная фаза в линейных ускорителях отрицательна - лежит на подъёме ускоряющего электрич. напряжения (рис. 2). Тогда при пролёте частицей ускоряющего промежутка поле возрастает, так что отстающая частица (с фазой01-PAKET_11-28.jpg ) получает большую энергию и начинает догонять синхронную частицу, а опережающая (с фазой 01-PAKET_11-29.jpg ) - меньшую энергию и также начинает приближаться к синхронной.

Принцип А. оказал революционизирующее влияние на развитие ускорит, техники. Появилось семейство разнообразных ускорителей, работающих на основе А.: циклич. ускорители электронов (синхротроны) на энергии до 7 Гэв и протонов (синхрофазотроны, фазотроны и др.) до энергии 75 Гэв, циклич. ускорители с переменной кратностью q (микротроны), линейные резонансные ускорители протонов на энергии до 70 Мэв. А. отсутствует, когда частота обращения частиц не зависит от их энергии (изохронные циклотроны), а в линейных ускорителях - когда скорость движения частиц приближается к скорости света и практически перестаёт зависеть от энергии (линейные ускорители электронов на энергии выше 10 Мэв).

Об А. в ускорителях со знакопеременной (сильной) фокусировкой см. Ускорители заряженных частиц.

Лит. см. при ст. Ускорители заряженных частиц. М. С. Рабинович.



Вернуться



© ChtoTakoe.ru      Разработка сайта VSD.ru