Что такое конструктивная теория функций
конструктивная теория функций
Большая советская энциклопедияконструктивная теория функций - раздел теории функций, в к-ром изучаются как приближённые представления функций, так и сами функции, исходя из свойств их приближённых представлений. К. т. ф. оформилась в самостоятельную дисциплину в трудах С. Н. Берн-штейна (термин "К. т. ф." принадлежит ему же), к-рый исходил из идей П. Л. Чебышева, относящихся к наилучшим приближениям функций, интерполированию по способу наименьших квадратов и проблеме моментов.Лит.: Бернштейн С. Н., Собр. соч., т. 1 - Конструктивная теория функций [1905-1930], М., 1952; Натансон И. П., Конструктивная теория функций, М. -Л., 1949; Смирнов В. И., Лебедев., Конструктивная теория функций комплексного переменного, М.- Л., 1964.
КОНСТРУКТИВНОЕ НАПРАВЛЕНИЕ в математике, математическое мировоззрение, связанное с признанием исследования конструктивных процессов и конструктивных объектов основной задачей математики. К кон. 19 в. в математике возникло неконструктивное, теоретико-множественное направление, получившее существенное развитие в трудах К. Вейерштрасса, Р. Дедекинда и особенно Г. Кантора. Началось построение теории множеств, претендовавшей на роль фундамента всей математики. В этой теории, в соответствии с изречением Кантора "сущность математики в её свободе", допускался большой произвол при введении "множеств", к-рые затем рассматривались как законченные чобъекты". Однако в нач. 20 в. в теории множеств были открыты т. н. антиномии, т. е. противоречия, показавшие, что нельзя любым образом объединить "объекты" в чмножества". Попытки преодолеть возникшие трудности были сделаны на пути аксиоматизации теории множеств, т. е. превращения её в аксиоматич. науку наподобие геометрии (см. Аксиоматическая теория множеств). Это осуществляется так, чтобы всё, требуемое для обоснования математики, получалось на основе аксиом, тогда как известные до сих пор антиномии не проходили бы.
Первая попытка в этом направлении была предпринята Э. Цермело, опубликовавшим свою систему аксиом теории множеств в 1908. Известные антиномии теории множеств не проходили в системе Цермело, однако гарантий против появления противоречий не было. Возникла проблема обеспечения непротиворечивости аксиоматически построенной теории множеств. Эту проблему выдвинул и пытался решить Д. Гильберт, основная идея к-рого состояла в полной формализации аксиоматической теории множеств, в трактовке её как формальной системы (см. в ст. Логика). Задача установления непротиворечивости рассматриваемой теории сводилась бы тогда к доказательству формальной недоказуемости формул определённого вида. Это доказательство должно было быть убедительным рассуждением о конструктивных объектах - формальных доказательствах. Оно, т. о., должно было укладываться в рамки конструктивной математики. Цель, поставленная Гильбертом, оказалась недостижимой, что было доказано К. Гёделем в 1931. Однако большой интерес представляет предложенное Гильбертом средство - метаматематика, конструктивная наука о формальных доказательствах, являющаяся частью конструктивной математики. Программу Гильберта можно охарактеризовать как неудавшуюся попытку обосновать теоретико-множественную математику на базе конструктивной математики, в надёжности к-рой он не сомневался. Самого же Гильберта следует считать одним из основоположников конструктивной математики.
К. н. можно рассматривать как ответвление основанного Л. Э. Я. Брауэ-ром интуиционизма, программа к-рого состоит в исследовании умственных ма-тематич. построений. Близость К. н. к интуиционизму проявляется в понимании дизъюнкций и теорем существования, а также в трактовке закона исключённого третьего. Расхождения между этими двумя направлениями состоят прежде всего в том, что конструктивисты, в отличие от интуиционистов, не считают свои построения чисто умственным занятием; кроме того, интуиционисты рассуждают о неких "свободно становящихся последовательностях" и рассматривают континуум как "среду свободного становления", тем самым привлекая к рассмотрению неконструктивные объекты. К. н. в математике привело к построению особой науки - конструктивной математики.
А. А. Марков.